Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-11, 2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-2316895

ABSTRACT

Mutations drive viral evolution and genome variability that causes viruses to escape host immunity and to develop drug resistance. SARS-CoV-2 has considerably higher mutation rate. SARS-CoV-2 possesses a RNA dependent RNA polymerase (RdRp) which helps to replicate its genome. The mutation P323L in RdRp is associated with the loss of a particular epitope (321-327) from this protein. We consider the effects of mutations in some of the epitope region including the naturally occurring mutation P323L on the structure of the epitope and their interface with paratope using all-atom molecular dynamics (MD) simulation studies. We observe that the mutations cause conformational changes in the epitope region by opening up the region associated with increase in the radius of gyration and intramolecular hydrogen bonds, making the region less accessible. Moreover, we study the conformational stability of the epitope region and epitope:paratope interface under the mutation from the fluctuations in the dihedral angles. We observe that the mutation renders the epitope and the epitope:paratope interface unstable compared to the corresponding wild type ones. Thus, the mutations may help in escaping antibody mediated immunity of the hostCommunicated by Ramaswamy H. Sarma.

2.
Biotechnol Appl Biochem ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2094152

ABSTRACT

The spike protein of SARS-CoV-2 mediates receptor binding and cell entry and is the key immunogenic target for virus neutralization and the present attention of many vaccine layouts. It exhibits significant conformational flexibility. We study the structural fluctuations of spike protein among the most common mutations that appeared in the variant of concerns (VOC). We report the thermodynamics of conformational changes in mutant spike protein with respect to the wild-type from the distributions of the dihedral angles obtained from the equilibrium configurations generated via all-atom molecular dynamics simulations. We find that the mutation causes the increase in distance between the N-terminal domain and receptor binding domain, leading to an obtuse angle cosine θ distribution in the trimeric structure in spike protein. Thus, an increase in open state is conferred to the more infectious variants of SARS-CoV-2. The thermodynamically destabilized and disordered residues of receptor binding motif among the mutant variants of spike protein are proposed to serve as better binding sites for the host factor. We identify a short stretch of region connecting the N-terminal domain and receptor binding domain forming a linker loop where many residues undergo stabilization in the open state compared to the closed one.

SELECTION OF CITATIONS
SEARCH DETAIL